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This paper proposes a simple dynamic three-term hysteresis model which is based on vector play model to estimate iron loss of non-

oriented (NO) electrical steel sheet (ESS) taking account of the rotating magnetic fields. The dynamic three-term hysteresis model is 

consists of static hysteresis field part, frequency-dependent eddy current part and excess field part. In this paper, the static hysteresis 

part is based on the vector play model, and a novel and simple vector shape function identification method is proposed by using a set of 

symmetric hysteresis minor loops are measured by one-dimensional (1-D) steel sheet tester (SST) under 1 Hz. In addition, some 

parameters in the proposed model will be identified by particle swarm optimization (PSO) method though fitting the measured 

hysteresis loops. The validity of the proposed hysteresis model will be investigated through comparisons with experimental results 

under various magnetic field conditions. 
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I. INTRODUCTION 

RON LOSS and other performance analyses of electrical 

motors and transformers require accurate description of the 

vector hysteretic property of an electrical steel sheet (ESS). It 

is because most electric machines have rotating magnetic 

fields as well as alternating magnetic fields, and combination 

of them always results vector hysteretic behaviors. The play 

model is one of the most efficient and accurate models to 

describe the vector hysteretic behaviors. Its vector versions 

can be classified into two: one is the superposition of scalar 

play models along the azimuthal direction [1], and another is 

geometric extension of the scalar model [2]. Though based on 

the geometric extension which is known to be more efficient 

[3], amount of measured data is needed for identification, and 

the data is very difficult to measure under 1 Hz magnet field. 

On the other hand, a lot of experimental results, however, 

show the non-oriented ESS also has anisotropic properties 

when rotating magnetic field is applied. For this reason, some 

anisotropic versions of the vector play model have been 

proposed [4]. However, comparisons of their outputs with 

experimentally measured data show that the accuracy of the 

anisotropic versions is still not satisfactory to be applied to 

electric machines such as motors and generators.  

In this paper, an anisotropic vector dynamic hysteresis 

model based on vector play model is proposed. The vector 

play model is based on the superposition of scalar play models 

along the azimuthal direction, and a novel and simple 

identification method for vector shape function is proposed by 

using a set of symmetric hysteresis minor loops are measured 

by one-dimensional (1-D) steel sheet tester (SST) under 1 Hz 

alternating magnetic fields. In additional, the parameters of the 

dynamic three-term hysteresis model will be identified by 

particle swarm optimization (PSO) method though fitting the 

measured hysteresis loops. The validity of the proposed 

hysteresis model will be investigated through comparisons 

with experimental results under various magnetic field 

conditions. 

II. SCALAR PLAY MODEL AND ITS IDENTIFICATION 

In this paper, the vector play model is based on the superpo-

sition of scalar play models along the azimuthal direction, so 

scalar play model should be constructed firstly. An inverted 

version of scalar play model, which provides its output mag-

netic field strength (H) from the input magnetic flux density 

(B), is expressed as follows [4]:  
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where Bs is saturation value of magnetic flux density, fζ is an 

input-independent shape function.  The play operator having 

its height ζ, and given as: 
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where p
0 

ζ  is the value at previous time. 

The discretized form of the scalar play model (1) can be 

written as: 
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where M is the number of play operators. 

The identification of the shape function fm is based on the 

Everett function of the Preisach model [5]. The Everett 

function E(α,β) is defined from experimentally measured 

symmetric B-H loops as:  
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where h
+
(Ba,B) and h

-
(Ba,B) are, respectively, the ascending 

and descending branches of the symmetric B-H loop with 

maximum amplitude Ba.  

Based on the equivalence relation between the scalar play 

model and the scalar Preisach model [5], the shape function is 

identified from the distribution function, μ(∙,∙), as follows:  
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and it physically corresponds to the area of the filled region in 

Fig. 1. 

After the number of play operators is decided, identification 

of the shape function fm is linearized as follows: 
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The unknown E(bj,bk) in (7) are calculated from the known 

Everett function values though two-dimensional linear 

interpolation. 

The proposed identification algorithm is applied to a Non-

oriented ESS 35PN440 specimen. Totally 16 symmetric B-H 

loops are measured along the rolling direction for the range of 

0.1≤ B≤1.6 (T) by using 2-dimensional single sheet tester, and 

then the shape function is identified.  

Fig. 2 shows the application results to minor loops under 

alternating magnetic fields along rolling direction where 

modeling results match well with the measured ones. 

III. DYNAMIC VECTOR HYSTERESIS MODEL 

A magneto-dynamic vector hysteresis model which 

separates H into static field, classical eddy current field and 

excess fields is proposed as follows: 
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where δe=sign(dB/dt), δ=sign{cos(θB-φi+ψ)} and ωi is the 

weighting factor for the direction eφi. The phase shift ψ and 

coefficients w, a0, a1 and a2 are experimentally identified. In 

this paper, PSO method will be used to decide the above 

parameters though fitting measured data. The static hysteresis 

field of H in (8) is calculated by vector play model with vector 

shape function, which is calculated as follows: 

Step 1 Calculate the vector Everett function F(α,β) from sca-

lar Everett function E(α,β) as follows [6]: 
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Step 2 Calculate the vector distribution function λ(α,β) as 

follows: 
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Step 3 Calculate the vector shape function g as follows:   
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In the version of full paper, overall analysis algorithm and 

will be explained in detail. The scalar and vector shape func-

tions will also be constructed and fully investigated by using 

symmetric minor loops. This algorithm will be applied on a 

non-oriented material 35PN440. Meanwhile, iron loss will be 

calculated and investigated through comparisons with 

experimental results. 
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Fig. 1. Physical meaning of shape function f(∙) of scalar play model. 

 
Fig. 2. Comparison of the measured (dot line) and modeled minor (solid 

line) loos under alternating magnetic field along rolling direction. 
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